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Abstract 

DoD acquisition is an extremely complex system, composed of myriad 

stakeholders, processes, people, activities, and organizational structures. Processes 

within this complex system are encumbered by continuous creation of large amounts 

of unstructured and unformatted acquisition program data. Acquisition analysts and 

decision-makers must analyze this available data to obtain a complete and 

understandable picture. For those embedded within the complexities of the 

acquisition community, this effort represents a daunting, if not impossible, task. We 

apply a data-driven automation system, namely, Lexical Link Analysis (LLA), to help 

acquisition researchers and decision-makers recognize important connections 

(concepts) that form patterns derived from dynamic, ongoing data collection. This 

year we have built two use cases of the LLA web service to develop focused 

practice and theory. In practice, we have been examining both LLA and System Self-

awareness (SSA) as knowledge management tools for scoring/ranking interesting 

information and for visualizing/reporting correlations among categories of 

information. In theory, we have shown how to optimize the overall fitness of the 

system by considering the trade-off between a node’s authority and expertise. This 

work has advanced the DoD-wide effort of integrating and maintaining authoritative 

and accurate acquisition data services in both legacy and new platforms. 

Keywords: Lexical Link Analysis, Text Mining, Data Mining, Program 

Elements, Major DoD Acquisition Programs, Universal Joint Task Lists, Resource 

Allocation, Warfighters’ Requirement, Urgent Need Statements, Unstructured Data, 

Data-Driven Automation, System Self-Awareness, Knowledge Network Theory, 

Authority Centrality, Expertise Centrality 
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Executive Summary 

DoD acquisition is an extremely complex system composed of myriad 

stakeholders, processes, people, activities, and organizational structures. Processes 

within this complex system are encumbered by the development of large amounts of 

unstructured and unformatted acquisition program data, which, due to their enormity 

and complexity, are narrowly useful and difficult to aggregate across the enterprise. 

Acquisition analysts and decision-makers must, however, analyze all types and 

spectrums of the available data in order to obtain a complete and understandable 

picture. Considering the work that acquisitions systems must accomplish, there is a 

lack of internal congruence between multiple points at which the system should have 

knowledge of itself and of decision-makers who depend on aggregate information. 

Current information and decision support systems may not readily help overcome 

this difficulty, and they present users within the acquisition community with 

information overload and limited situational awareness. We believe that the 

application of a data-driven automation system—namely, Lexical Link Analysis 

(LLA)—can facilitate a resolution of acquisition researchers’ data sense-making 

dilemma and help reveal important connections (concepts) and patterns derived 

from dynamic, voluminous, and on-going data collection.  

In the past two years, we have utilized the LLA method to discover valid 

associations among disparate, unstructured data sets that would otherwise have 

required lengthy and expensive man-hours to analyze. The LLA technology and 

methodology were used to uncover and graphically display relationships among 

competing programs and to compare their features with Navy-driven requirements. 

In the past year, we tested our method for visualization and validity using samples of 

acquisition data.  

During the research period begun in 2012, we achieved the following goals:  
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1. Conceptual and Focused Development  

We continued using the LLA web service, hosted in the NPS Distributed 

Information and Systems Experimentation (DISE) lab with the link 

http://firedev2.ern.nps.edu:8080/ARP, to further assist the DoD-wide effort of 

integrating and maintaining authoritative and accurate acquisition data services in 

both legacy and new platforms. 

We communicated with the Office of Secretary of Defense (OSD) contacts to 

identify the data sources from the Acquisition Visibility Portal for the Systems 

Engineering Plan (SEP), the Test & Evaluation Master Plan (TEMP), and the 

Acquisition Strategy Report (ASR). This provided opportunities to apply LLA to 

examine consistency, gaps, and data quality and to address the OSD requirements 

and understand program dependencies in ensuing research next year. 

2. Theory and Methodology Development 

The core technologies, LLA together with SSA, used throughout this project, 

have been examined thoroughly, in practice and in theory. In practice, we have 

examined both LLA and SSA as knowledge management tools for scoring/ranking 

interesting information and for visualizing/reporting correlations among 

categories/layers/systems of information, including lexical, semantic, and social links 

using the use cases. In theory, to take advantage of both concepts, we have 

demonstrated that it may be possible to stand outside a self-organizing system and 

optimize the overall fitness of the system by considering the centrality measures of 

authority and expertise scores. We have summarized the research in a journal paper 

entitled “Lexical Link Analysis (LLA) and System Self-Awareness (SSA): Theory and 

Practice,” planned for submission to the journal ACM Transactions on Information 

Systems (TOIS). 
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I. Significance of the Research 

Acquisition research has increased in component, organizational, technical, 

and management complexity. It is difficult for acquisition professionals to remain 

continuously aware of their decision-making domains because information is 

overwhelming and dynamic. According to the Chairman of the Joint Chiefs of Staff 

Instruction for Joint Capabilities Integration and Development System (JCIDS; 

CJCS, 2009), there are three key processes in the DoD that must work in concert to 

deliver the capabilities required by warfighters: the requirements process; the 

acquisition process; and the Planning, Programming, Budget, and Execution (PPBE) 

process.  

Each process produces a large amount of unstructured data; for example, the 

warfighters’ requirements are documented in Universal Joint Task Lists (UJTLs), 

Joint Capability Areas (JCAs), and urgent need statements (UNSs). These 

requirements are processed in the JCIDS to become projects and programs, which 

should result in products such as weapon systems that meet warfighters’ needs. 

Program data are stored in the Defense Acquisition System (DAS). Programs are 

divided into Major Defense Acquisition Programs (MDAPs), and Acquisition 

Category II (ACATII), and so forth. Program Elements (PEs) are the documents 

used to fund programs yearly through the congressional budget justification process. 

All the data is too voluminous, too unformatted, and too unstructured to be easily 

digested and understood—even by a team of acquisition professionals. There is a 

critical need for automation to help reveal to decision-makers and researchers the 

interrelationships within these processes (see Figure 1).  

We have attempted to develop and frame our research efforts around 

research questions in the following categories: conceptual, focused, theory 

development, and methodology.
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Conceptual  

 How can the information that emerges from the acquisition process be 
used to produce overall awareness of the fit between programs, 
projects, and systems, and of the needs for which they were intended?  

 If a higher level of awareness is possible, how will that enable system-
level regulation of programs, projects, and systems for improvement of 
the acquisition systems? 

Focused  

 Based on the normal evolution of documentation and current data-
based program information, how can requirements (needs) be 
connected to system capabilities via automation of analysis?  

 Can requirement gaps be revealed? 

Theory Development  

 How can a correlation between system interdependency 
(links/relationships) and development costs be shown, if present? 

Methodology 

 How can we use natural language and other documentation (roughly, 
unformatted data) to produce visualization of the internal constructs 
useful for management through Lexical Link Analysis (LLA)? 

Lexical analysis is a form of text mining in which word meanings are 

developed from the context from which they are derived. Link analysis, a subset of 

network analysis that explores associations among objects, reveals the crucial 

relationships between objects when collected data may not be complete. LLA is an 

extended lexical analysis and link analysis. LLA can also be used in a learning mode 

in which such features and contextual associations are initially unknown and are 

constantly being learned, discovered, updated, and improved as more data become 

available.   

We consider that the cognitive interface between decision-makers and a 

complex system may be expressed in a range of terms or features (i.e., a specific 
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vocabulary or lexicon) to describe attributes and the surrounding environment of a 

system. Here, system self-awareness, or program awareness (Gallup, MacKinnon, 

Zhao, Robey, & Odell, 2009) allows decision-makers to be aware of what systems, 

programs, and products are available for acquisition; to understand how the systems 

match warfighters’ needs and requirements; to recognize relationships among them; 

to improve efficiency of available collaboration; to reduce duplication of effort; and to 

reuse components to support cost-effective management with greater immediacy, 

possibly in real-time.  

 

Figure 1. LLA Seeks to Inform the Business Processes Links (e.g., From Requirements 

to DoD Budget Justification to Final Products) That are Critical for DoD Acquisition Research 

In precise terms, we observed three important processes that seem 

fundamentally disconnected. They are the congressional budgeting justification 

process (such as information contained within the PEs), the acquisition process 

(such as information in the MDAPs and ACATII programs), and the warfighters’ 

requirements (such as information in UNSs and UJTLs). They were not analyzed 

and compared to each other in a dynamic, holistic methodology that could keep up 

with changes and reflect patterns of relationships. 
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There had been little previous effort to integrate the data in these three 

components. We analyzed in detail samples in the three components, validated the 

LLA method using large-scale data sets, and also successfully applied the method to 

discover the patterns in the data that were interesting and previously unknown to 

many acquisition professionals (Zhao, Gallup, & MacKinnon, 2010, 2011a, 2011b, 

2011c, 2012a). 
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II. Research Results  

The work, begun in 2012, has the following objectives: 

 Build at least two use cases of applications of Lexical Link Analysis 
web service for large-scale automation, validation, discovery, 
visualization, and real-time program awareness. 

 Demonstrate the methodology for assisting the DoD-wide effort of 
integrating and maintaining authoritative and accurate acquisition data 
services in both legacy and new platforms. 

A. Use Case 1: Acquisition Program Awareness 

We have conducted two research projects to date on this subject, namely 

“Towards Real-Time Program-Awareness via Lexical Link Analysis” (2010) and “A 

Web Service Implementation for Large-Scale Automation, Visualization and Real-

Time Program-Awareness via Lexical Link Analysis” (2011b). This follow-up 

research (Phase III) extended the work to the previous two projects. We used this 

use case to answer the research questions stated previously regarding the levels of 

conceptual and focused theory development and methodology. 

1. Conceptual Development 

To realize the potential of the LLA method, we first established the validity of 

the method in the context of realistic, large-scale data sets, which include the 

budgeting process through PEs to the acquisition process via acquisition programs 

(MDAPs, ACATIIs) to the warfighters’ requirements (UNS, UJTL, etc).  

1) Congressional budget process (i.e., Program Elements [PEs]): 
http://www.dtic.mil/descriptivesum/ 

2) Programs and products (MDAPs and ACATIIs): 
http://comptroller.defense.gov/defbudget/fy2008/fy2008_weabook.pdf 
http://www.fas.org/man/dod-101/sys/land/wsh2007/index.html 
http://www.acq.osd.mil/ara/am/sar/ 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 8 - 
k^s^i=mlpqdo^ar^qb=p`elli=

=

3) Requirements (i.e., UJTLs): 
http://www.dtic.mil/doctrine/jel/cjcsd/cjcsm/m350004d.pdf 

Result 1: We found that the Pearson correlation between the links identified 

by human analysts and by the LLA method was 0.57 with a p-value = 10e-7 (Zhao et 

al., 2010, 2011b). LLA was used to predict correctly 80% of the links identified by the 

human analysts.  

The high correlation of LLA results with the link analysis done by human 

analysts makes it possible for automation, saving human effort, and improving 

responsiveness. Automation is achieved via computer program or software agent(s) 

to perform LLA frequently—and in near real-time. Agent learning makes it possible 

to reach real-time; visualization correlates lexical links to core measures; features 

and patterns are discovered over time for the system as a whole. We can take 

advantage of the data in motion (social media data) and RSS feed data to build a 

better picture of real-time program awareness. 

An accurate text analysis requires a thorough initial search of the resources 

available on the Internet. At this point, our efforts are sometimes compared to those 

of a typical search engine. One of the disadvantages of conventional search engines 

is that they typically sort documents based on the popularity of documents, e.g. the 

frequency with which they’re linked to other documents, not based on semantics. 

Therefore, it does not satisfy completely the frequency with which they’re linked to 

other documents search needs nor determine relevance if the links among the 

documents are not available. For example, the content in the forum is not cross-

linked; therefore, if conventional search engines are used, the discovered or 

revealed topics or themes cannot be found as prioritized results.  

2. Focused Development 

Result 2: We took a detailed look at RDT&E budget modification practices 

from 2008–2009, specifically, the observed percentage change of funding for the 

approximately 500 PEs from 2008–2009. For the PEs whose number of LLA links to 
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other PEs was larger than 10, the funding change was 14%, compared to 40% for 

those whose number of LLA links to other PEs was fewer than 10. This indicated the 

current practice tended to increase the budget less for the PEs with more links to 

other PEs and to increase the budget more for the ones with fewer links, an effort to 

allocate resources to avoid overlapping efforts. In a different perspective, the overall 

numbers of LLA links to the UJTLs were much fewer. The PEs that had at least one 

LLA match to UJTLs, had an average percentage cost increase of 10%, compared 

to 29% for the PEs that had no matches. This indicates a need to consider gaps and 

the warfighters’ requirements as priorities in the RDT&E investment (Zhao et al., 

2011a, 2011b). 

This demonstrated that our approach “discovers” and displays semantic and 

social networks of programs and PEs. It discovers blind spots on the part of human 

analysts that are caused by overwhelming data. These findings can be useful as 

validation and guidance for implementing the DoD’s budget reduction planning. 

Patterns revealed by LLA create an opportunity to reduce the overall inefficiency of 

cost cutting by linking programs with warfighters’ requirements, as opposed to cost 

cutting, which focuses mainly on the big ticket items such as MDAPs. 

Result 3: We used the LLA method to generate semantic networks for the 

PEs, in which two PEs are connected if they are discovered to use similar lexical 

terms from the LLA method shown in Figure 2. The size of a node in Figure 2 shows 

the percentage of the budget increase from a current year to the following year. The 

network shows that the more connected programs tend to be in the middle with 

smaller nodes, while the less connected programs tend to be on the outside with 

larger nodes. This pattern indicates the correlation between independencies of 

programs (i.e., the connections among nodes in Figure 2), and cost increases (i.e., 

the size of the nodes in Figure 2). The social network links marked by human 

analysts, in contrast, do not reveal this pattern. 
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Trend Analysis
Semantic Network: Size of Nodes = 2009 Cost / 2008 Cost

Red: Air Force

Green: Navy

Yellow: Army

Ratio: 1 to 1

 

Figure 2. A 3-D View of PEs Identified by the LLA Semantic Network 

Result 4: We developed a web service to link the available public data in the 

budgeting process through PEs to the acquisition process via acquisition programs 

(MDAPs) responding to warfighters’ requirements (UJTLs). The web service is 

currently hosted at the NPS DISE lab and the link is 

http://firedev2.ern.nps.edu:8080/ARP as shown in Figure 3. 

 

Figure 3. Acquisition Web Service Hosted in DISE 
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Figure 4 shows a summary of the approximately 30 top themes for the PEs 

for all three services (2004–2011) using the web service result in Figure 3. “LLA 

Counts” are the number of lexical links (word pairs) that were categorized into one 

group as a theme characterized by keywords. “Max Source” shows which data 

source (e.g., navy_2011 in the first row) shows the maximum number of LLA counts 

compared to the other sources for that theme. 

 

Figure 4. Summary of  Approximately 30 Top Themes for the PEs for all Three  

Services (2004–2011) 

Observations are summarized in the bullet list for Figure 4. 

 The PEs’ content seems dominated by the Navy. This might be due to 
the fact that the Navy provides better (e.g., more specific) PE 
descriptions. 

 The Navy could also, indeed, provide the leadership for the overall 
RDT&E effort for the DoD, as evidenced by the highlighted (yellow) six 
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themes in 2011 which are dominant by the Navy (see the Max Source 
column). These new themes are consistent with the findings from the 
research categories and reports for the Acquisition Research Program 
hosted at NPS (Zhao et al, 2012a, 2012b), as well as the new trends 
for the defense industry.  

3. Plans for 2013 

Our goal is to demonstrate the LLA web service can further assist a DoD-wide 

effort to integrate and maintain authoritative and accurate acquisition data services 

in both legacy and new platforms. 

Specifically, we will examine data sources from the Acquisition Visibility Porta 

I (AVP) for the Systems Engineering Plan (SEP), the Test & Evaluation Master Plan 

(TEMP), and the Acquisition Strategy Report (ASR).These data will be used to 

examine consistency, gaps, and data quality, and explore LLA visualizations and 

reports. Results will be validated against the samples of completed/approved 

Information Support Plans 

(ISPs; http://jitc.fhu.disa.mil/jitc_dri/pdfs/interim_guide_interoperability_nss_mar_12.

pdf, https://gtg.csd.disa.mil), and associated milestone artifacts, where program 

managers identified program dependencies.  

B. Task 1: Work With the AVP Data Source and Ongoing 
Requirements 

This year, we will focus on more specific challenges, questions, and data 

sources found in the following communications: 

1. Data Sources  

We will use the data from the AV Portal (https://portal.acq.osd.mil & 

 https://portal.acq.osd.mil/portal/server.pt/community/acquisition_visibility/1427), the 

Kaleidoscope analysis tool, DAMIR, and AIR (Acquisition Information Repository). 
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2. Analysis Directions and Questions 

We communicated with the OSD contact, Mr. Robert Flowe regarding the 

AVP requirements and how LLA might help AVP during the 2012 symposium.  The 

following is the discussion between Mr. Flowe and Ms. Zhao 

Flowe:  “I wonder if I could ‘prime the pump’ regarding potential applications of LLA 

to the issues we’re grappling with at OSD? I hope you don’t mind if I indulge in a little 

‘stream of consciousness’ musing about where LLA could really add value. One of 

the biggest risk factors we’re facing in defense acquisition is the unanticipated 

effects of program interactions. ASD(SE) and Dahmann  work on identifying 

interdependence among programs within SoS as a risk driver. More generically, you 

can call it the result of joint capabilities, portfolios, program interdependencies, 

system-of-systems effects, or whatever, the bottom line is that our ‘program centric’ 

acquisition paradigm is increasingly ill suited to identify and address program risks 

that arise outside of the program boundary. I think LLA could help us isolate these 

issues from the body of information we currently collect, but have yet to effectively 

utilize.” 

Zhao: “Yes, we would love to work with you to work on these specific requirements.” 

Flowe: “Part of the problem is that very little of the information generated for program 

oversight is amenable to effective analysis. Every major acquisition program’s 

milestone review generates volumes of information, which the OSD staff is 

supposed to review to determine if the program is properly prepared for the next 

milestone. Although we are beginning to compile these artifacts centrally to facilitate 

review/analysis, the fact remains that the only way to analyze the information in 

these artifacts is to read them. With limitations on staffing, little time is available to 

thoroughly review the artifacts. Moreover, each functional community is required to 

review only the particular document it is responsible for. So the Systems 

Engineering community looks at the Systems Engineering Plan (SEP), the Test and 

Evaluation community looks at the Test & Evaluation Master Plan (TEMP), the 

Acquisition community looks at the Acquisition Strategy Report (ASR), but rarely do 
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any of these stakeholders review multiple reports or jointly discuss them to 

determine if they are mutually consistent and flag inconsistencies that might indicate 

programmatic risk. There is even less incentive/opportunity to look for external 

factors that would potentially invalidate the assumptions that underpin the basic 

cost/schedule/performance targets the program is executing to. I think that LLA 

might help cue our attention to these issues, by examining the various milestone 

artifacts, extracting the lexical links, and portraying a map of linked concepts for 

each artifact.” 

Zhao: “To achieve this, we can do by examining SEP, TEMP and ASR, and, thereby, 

discover inconsistencies and gaps. We can begin by studying the overall patterns 

first, then go deeper, searching for data gaps and inconsistencies.” 

Flowe: “Overlaying the concept maps for each of the major artifacts to do a pair-wise 

comparison might expose significant disconnects between, say, the acquisition 

strategy and the systems engineering plan, or the SEP and the TEMP. Consider a 

situation where the SEP identifies a critical dependency between the program and 

an external system, but the TEMP doesn't have a corresponding reference to testing 

that interdependency. If LLA could highlight these inconsistencies for further 

scrutiny, it would help the staff identify significant risks that might otherwise go 

undetected until later in the program, when opportunities for recovery are limited.” 

Zhao: “When examining SEP, TEMP, and ASR, we can further examine critical 

dependencies and report them as themes, concepts, and word pairs, thereby 

offering specific and productive directions for further scrutiny.” 

Flowe: “A similar application of LLA would be to compare lexical link maps of the 

same artifact from one milestone to another. If the lexical link map for the SEP at 

M/S-B is significantly different from the SEP at M/S-C, that might indicate a reduction 

in system functionality resulting from cost increases elsewhere. 

Zhao: “This is interesting as an initial study to see if the correlation is there” 
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Flowe: “For identifying external dependencies, I wonder if LLA could be “trained” to 

distinguish program names or organizational names from other nouns? This would 

be helpful in identifying external dependencies. We could provide a list of program 

names that could be used as a training aid or reference table. 

Zhao: “We have a context-dependent entity extraction tool that might be able to 

perform this task.” 

Flowe: “Recalling my question at the symposium, I also wanted to explore whether 

LLA could be used to extract the implicit semantic layer from program 

documentation, in the form of subject-object-predicate triples. We’re hoping to 

leverage ontological formalisms to facilitate the alignment of disparate data sources 

at the enterprise level. We’ve found that each functional domain within AT&L has 

unique meanings for the data they utilize, so mapping from one domain to another is 

problematic. We can create significant confusion if we don’t properly account for 

these domain-unique semantics—the term “program” doesn't mean the same for a 

program manager and a CAPE resource analyst. We believe that constructing 

reference ontologies for each domain will help us identify and mitigate these 

differences, and become more efficient in providing consistent enterprise-wide 

acquisition data.” 

Zhao: “LLA is based on statistical bi-gram text analysis. The subject-object-predicate 

triples are usually generated by linguistics-based text analysis. Stanford Lexical 

Parser is one of these tools. We may combine the two approaches (when language 

is known, e.g., English) to get better results.” 

C. Task 2: Explore New Visualization and Big Data 
Technologies for the Acquisition Research Web Service 

There are some significant industry trends in recent years regarding data 

scale-up and visualization. In this task, we want to investigate new big data 

technologies such as HDFS (Hadoop Distributed File System) and MapReduce as 
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an alternative to high performance computing to parallel process the acquisition 

research web service. We will also investigate how to benefit from using InfoVis, a 

web visualization tool in JavaScript to replace Organizational Risk Analyzer (ORA) 

software (Reminga & Carley, 2003) that is currently used to visualize LLA results.  

1. Methodology 

We have further developed the LLA methodology used throughout this project 

which is summarized in detail in Appendix A. 

D. Use Case 2: Analysis of the Acquisition Research 
Program (ARP) Data 

We applied LLA to eight years of research report data for the NPS Acquisition 

Research Program. We downloaded about 740 publications (from 2003–2010) 

from the website http://www.acquisitionresearch.net. 

1. Pre-Defined Categories 

Each report was labeled manually with a category, for example, “Acquisition 

Strategy” or “Costing.” Approximately 160 categories were created for the years 

2003–2010. Table 1 shows the number for each category and year. By observing 

the bubble chart derived from LLA, we found three categories: 

 Steady categories in which the number of reports increased from 2003 
to 2010 as shown in Figure 5.  

 New and emerging categories in which there were relatively new 
information from 2006–2010 compared with 2003–2005 as shown in 
Figure 6. These categories attracted more research attention in the 
years that followed. 

 Sunsetting categories in which the number of reports reduced from 
2006–2010 compared with 2003–2005 as shown in Figure 7.
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Table 1. ARP Reports From 2003–2010 

Year # of Reports # of Categories 

2003  8 6 

2004  27 17 

2005  61 34 

2006  62 29 

2007  143 63 

2008  144 68 

2009  127 61 

2010  184 65 
 

 

Figure 5. Steady Categories 

 

Figure 6.New and Emerging Categories 
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Figure 7. Sunsetting Categories 

The question that arises is, what are the characteristics of the three 

categories? We first sorted the existing combinations of year (2003–2009) and 160 

categories (e.g., 2003-AcquisitionStrategy and 2004-Outsourcing, etc.). There are a 

total of 245 such combinations. For each of these combinations, we labeled it 1 

(kept), if the associated category was continued in the following year (e.g., 2003-

AcquisitionStrategy is an existing category and 2004-AcquisitionStrategy is also a 

category); 0 (deleted), if the associated category was not continued in the next year 

(e.g., 2003-ContractCloseout is an existing category, but 2004-ContractCloseout is 

not—no reports were classified in the ContractCloseout category in 2004).  

The combinations and labels represent the two decision-making processes in 

the Acquisition Research Program, namely 

1) Whether or not a research area or project should move forward from 
one year to another, and  

2) How a research area or project might be categorized.  

By furthering our understanding of how dynamics of the combinations were 

kept or deleted from 2003–2010, we hope to explore how decisions were made in 

the current process, and, more importantly, to discover the characteristics of 

research areas (i.e., categories that are emerging from the past to the present, and 

to the future).  
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Figure 8 shows a detailed view of the semantic network for 2003 with six 

categories; the two in red were deleted in the following year; and the four in green 

were kept. Initially looking at each year seems to indicate the deleted nodes are 

associated with the “hot” links (i.e., links in red and orange colors). For example, two 

such nodes (2003-ContractCloseout and 2003-CostasIndependentVariable) are red 

for 2003. This may indicate one of the characteristics of the emerging and steady 

growing categories is to have unique content compared to the existing information at 

the time. Observing Figure 8 and Figure 9, we realize the deleted categories might 

also be associated with the “cold” links (i.e., links in green and blue). One such node 

(2004-LogisticsModenizationProgram) is shown in Figure 9 and is shown in the 

border of the graph, indicating total degree of the node might also be low.  

 

Figure 8.Semantic Network of Year-Category for 2003 
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Figure 9. Semantic Network of Year-Category for 2004 

Emerging categories tend to form fewer but stronger links (i.e., Group B & D, 

which have higher kept rates). This type of node is likely to reside in the “Ring of 

Emergence” as shown in Figure10 between the red and green circle. The most 

central one, Group B & C, represents categories that are well-researched and that 

the research community are already aware of and, therefore, are less likely to grow. 

The nodes located at the borders (Groups A & C and A & D) represent categories 

with weaker connections with others, some are even isolated, and that are, 

therefore, also less likely to grow. 

 

Figure 10. Ring of Emergence 

We define system self-awareness of a complex system as its ability to assess 

itself within a global context. This concept is connected to the network theories and 

self-organizing features of the complex systems we reviewed. In particular, we are 

interested in the following network measures for SSA, in which a node, representing 

a document, a concept, a theme, a person, or an object with features of lexical 

terms, assesses its position in a global context via the connections to other nodes. 

The terms we develop and use are as follows:  
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 Eigenvector: The principal eigenvector of a network matrix. The 
eigenvector centralities capture not only the number of neighbors a 
node has, but also take into account the importance of each neighbor.  

 Authority centrality:  in-links are considered in the eigenvector 
centrality.  

 Hub centrality:  out-links are considered in the eigenvector centrality. 

 Betweenness: How frequently the node is part of the shortest paths 
between pairs of other nodes in the network. 

 Burt constraint (Burt, 1992): The degree to which a node in a network 
is constrained from acting because of its existing links to other nodes.  

 Closeness: The length of the shortest or average path from the node to 
the rest of the nodes in the network. 

 Expertise (Carley, 2002): The degree to which each pair of nodes has 
complementary links, expressed as a percentage of the links of the first 
node.  

 Simmelian ties (Krackhardt, 1998): The normalized number of 
Simmelian ties of each node that are often associated with the number 
of brokers embedded in the fully connected nodes (cliques). For 
example, if a man has a strong tie to a woman, and both of them share 
a strong tie to their child, then the tie between the man and woman is 
considered stronger and is, therefore, Simmelian. 

 Triad count (Reminga & Carley, 2003): The number of triads centered 
at each node in a square network. A triad is a relationship amongst 
three nodes such that they constitute a distinct relationship. This may 
make the structure of a network more stable.   

Many other centrality measures other than LLA-related ones are defined, and 

are further discussed and computed in the ORA (Organizational Risk Analyzer) 

software (Reminga & Carley, 2003). These network centralities characterize in 

various ways a knowledge node’s position with other nodes.  

Figure 11 shows the relations among many centrality measures in the social 

network analysis (SNA) context; these measures can be used to evaluate the 

importance of lexical terms. Notice that the PageRank used by Google uses one of 

the measures. 
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Figure 11. Relations Among Centrality Measures 

LLA semantic/statistical techniques revealed certain common characteristics 

of interesting information (e.g., the growing themes). Eigenvector centrality sorted 

from low to high can be used as an indication for interestingness, which is typically 

an area for an expert to investigate or invest. 

Table 2 shows the results of statistical significance tests for the two groups of 

pre-defined categories (kept and deleted) using more centrality measures. The kept 

nodes have statistically significant higher authority centrality, but lower total degree, 

Simmelian ties (Krackhardt, 1998), and triad count (Reminga & Carley, 2003) 

centralities. Simmelian ties and triad counts are traditionally considered as measures 

of the stability of the social network structures. Along with the total LLA degree, they 

indicate that human decisions may focus on the information (e.g., ARP pre-defined 

categories) that exhibits weaker stability as semantic networks and, therefore, 

possesses the potential to change or grow. 

Table 2. Statistical Significance Tests (Pre-Defined Categories) 

Centrality 
Authority

Simmelian 
Ties 

Total LLA 
Degree 

Triad 
Counts 

Kept 0.732 0.123 0.415 1967.766 
Deleted 0.665 0.150 0.478 2646.340 

p-value 0.015 <0.0001 0.028 0.0002 

2. Using Automatic Discovered Clusters (Self-Organizing) 

We also applied the automatically discovered themes as categories to see if 

the same theory applies (i.e., the automatically generated themes combined with 
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years as categories, 225 of such automatic categories; e.g., 2003-

COST*COSTS*TOTAL and 2004-SYSTEMS*SYSTEM*PROGRAM). We define a 

value of an automatic category as 

# of lexical links in the time frame for the theme – # of lexical links in the next 

time frame for the same theme. 

The goal is to compute the centrality measures for the 225 node semantic 

network, generated from the 225 automatic categories,  in which links are only 

computed within the same time frame. We also computed the correlation between 

the centrality measures and “values” of the nodes. 

Table 3 shows the results of statistical significance tests for the two groups, 

and represents values of growing or sunsetting themes for the automatically 

discovered themes using more centrality measures. The growing nodes have 

statistically significant higher authority and betweenness centralities with statistically 

significant fewer triad counts. The total degree of centrality is lower, but not 

statistically significant. 

Table 3. Statistical Significance Tests for the Growing and Sunsetting Groups for the 

Automatic Categories 

Node ID 
Centrality 
Authority 

Centrality 
Betweenness 

Centrality 
Total Degree Triad Count 

Growing 0.43 41.70 0.18 50.28 

Sunsetting 0.35 28.50 0.19 65.79 

p-values 0.043 0.086 0.038 

3. Theory Development 

The core technology, Lexical Link Analysis (LLA), which we applied in theory 

and in practice to our use case, is a form of text analysis in which words and 

concepts, and their meanings, are represented as networks. LLA discovers and 

displays these networks of word pairs (i.e., semantic networks, from large-scale 
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unstructured data). This type of text-as-networks (TAN) has many advantages over 

other text analysis tools. When concepts and ideas are represented in lexical terms 

as if they are in communities of word networks, network theories (e.g., centrality 

measures that typically measure the position and influence of a node in a social 

network) and the preferential attachment theory (Barabási & Albert, 1999) of network 

growth, can be readily applied to evaluate the importance of lexical terms in a global 

context of interconnected concepts, ideas, and themes. Traditionally, authority 

centrality has been widely used to evaluate the importance of a network node in 

various applications, from ranking leadership in a social network to ranking a web 

page on the Internet. 

In contrast to authority measures, which are primarily used to represent 

established values such as power and leadership of nodes in a network, which were 

rarely examined in the past, are the new types of centralities (e.g., expertise 

measures) which measure a node according to its degree of uniqueness and 

innovation for a concept, an idea, or an organization. As we will show in this paper, 

they can be computed from categories of information using LLA. Expertise measures 

are more interesting because they seem to correlate with real-life values, such as 

the growth potential of a new or emerging concept, return of investment of a new 

business idea, and competiveness of an organization. 

In a system-of-systems point of view, a category of information, which is 

stored in unstructured texts, can be represented as a system of semantic networks 

using LLA. A system “self” can be a node in such a semantic network. System Self-

Awareness (SSA) refers to the “self” which is aware of itself in two ways: its relations 

to others (i.e., its authority and influence in a network) and its expertise (i.e., its 

innovation and uniqueness in a global context). Each self node can also be 

independently evaluated and associated with a “value,” which represents the 

measurable importance of the self node, such as its growth potential and 

competiveness. The correlations between the value of a self node and its self-
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awareness measures will serve as predictions of the emerging properties of 

information 

In practice, we have been examining both LLA and SSA as knowledge 

management tools for scoring/ranking interesting information and for 

visualizing/reporting correlations among categories/layers/systems of information, 

including lexical, semantic, and social links using four use cases. This effort then 

presents decision-makers with previously unavailable/emerging patterns and 

themes, as well as unprecedented levels of analysis, thus reducing the workload and 

overcoming the blind spots of human analysts and providing opportunities for  

potential automation.  

In theory, to take advantage of both concepts, we have been showing that a 

decision maker may want to stand outside a self-organizing system and optimize the 

overall fitness of the system by considering the trade-off between nodes’ self-

awareness of their own authority and expertise.  When computing the fitness of a 

system, a larger weight toward authority over expertise will result in a network 

growing with preferential attachment theory. Conversely, a larger weight towards 

expertise over authority will result in a network which is more competitive and gain a 

bigger return on investment. 

A different correlation (i.e., Pearson correlation coefficients) was computed for 

the various centralities and values as defined in the use cases for the nodes. For the 

automatically discovered clusters, the authority, betweenness, and correlation 

expertise centralities had positive correlations of 0.23, 0.24, and 0.19 (p < 0.05) with 

the defined node values. For the pre-defined ARP categories, the correlation 

expertise centrality had a positive correlation 0.15 (p < 0.05) with the node values, 

while the total LLA degree and triad count centralities had negative correlations of    

-0.12 and -0.17 (p < 0.05), respectively. These results seem to suggest that the 

interplay of authority and expertise centrality measures is important for the growth of 

a self-organizing system, and expertise measured via correlation expertise and LLA 
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total degree could provide indications of a system self-organizing into a network of 

experts. 

Recall that expertise centrality is a measure of the degree to which each pair 

of agents has complementary knowledge, expressed as a percentage of the 

knowledge of the first agent (Carley, 2002), 

                                              
∑ ሺଵି்஽_௅௅஺೔ೖ
಼
ೖసభ ሻ∗்஽_௅௅஺ೖೕ

∑ ்஽_௅௅஺೔ೖ
಼
ೖసభ

,     (1) 

where ܶܣܮܮ_ܦ௜௞ represents the total degree for agents i and k from a semantic 

network. Such a semantic network is generated from the content stored in the 

memory of agent i or k using LLA. The agent learning theory is explained in the next 

paragraph 

As illustrated in Figure 12, to automate human cognitive tasks (e.g., to separate and 

extract information automatically from the documents) we train synthetic learning 

agents to perform human tasks. Modern agent-based modeling and simulation 

systems originated using concepts such as cellular automation from the game of Life 

invented by John Conway in 1970. This began the development and implementation 

of genetic algorithms (Goldberg, 1989) and other artificial intelligence techniques to 

improve the ability of one agent acting alone. Synthetic, multi-agent, distributed 

networks were then developed to provide for an integrated community of 

heterogeneous software agents, capable of analyzing and categorizing large 

amounts of information and, thus, supporting complex decision-making processes 

(see Figure 13). At present, self-managing (Hinchey & Sterritt, 2006), self-healing 

(Dashofy, van der Hoek, & Taylor, 2002), self-optimizing, self-configuring, and self-

adapting software agents are desirable to automate ongoing human cognitive tasks 

in a complex network environment.  
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Figure 12. A Single Learning Agent Ingests Structured, Unstructured, Historical,  

or Real-Time Data and Separates Patterns and Anomalies 
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Figure 13. Agent Collaboration: Multiple Agents Work Together for  

Anomaly Search 

Our research creates and develops a computer-based learning agent capable 

of ingesting and comparing a wide range of data sources, while employing a process 

that separates patterns and anomalies within the data. Multiple agents can work 

collaboratively in a peer-to-peer network as shown in Figure 13. The Collaborative 

Learning Agents (CLA) were first invented and implemented by Quantum 

Intelligence, Inc. (QI, 2001–2012). The unique contribution of this architecture is to 

leverage a peer-to-peer agent network in which each agent can be self-aware of its 

position in a global knowledge network in order to be competitive as well as 

collaborative. We show here that the overall fitness of a network of agents can be 

accomplished through a learning framework, in which each agent contributes to the 

overall effect through a trade-off between its authority and expertise measured as 

centralities in the global knowledge network as follows. 
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At any given time, we are able to rank a knowledge artifact (a document, 

concept, theme, or category) based on its predicted future importance, and distribute 

knowledge among collaborative agents (organizations, stakeholders). On a theoretic 

level, we will use a time series model as follows: 

Observation ݔ௧:	Data for a single agent that is observable (e.g., measures of a 

single agent’s awareness of information [or expertise] using lexical links extracted 

from its stored content). 

State j, j = 1 ,… J: For different types of expertise, a transition matrix ݎ௜௝	is 

used to describe how one type of expertise, i, is transited to another type of 

expertise, j.  

An agent can have one or multiple types of expertise. For simplicity, we 

assume one agent only focuses on its best type of expertise, though, when it needs 

other types of expertise, it may collaborate with other agents through lexical links via 

semantic networks or social connections through a peer list of friends. We also 

model the relation as a probability density function bj[O(t)] between lexical links of a 

single agent’s content input, O(t), and states as different types of expertise j  that are 

observed from the whole network. 

This approach is related to the Expectation and Maximization (EM) method in 

statistics. It is a statistical method used to compute maximum likelihood estimates 

given incomplete samples (Dempster, Laird, & Rubin, 1977). Here we describe how 

to use a tied-mixture EM algorithm to compute the correlation or affinity between an 

input content x and a type of expertise j  

Let )(xbj be a likelihood function )|( jxP , where j represents an expertise j. 

)|( jxP  represents the likelihood of producing content x if an agent possesses an 

expertise j. For a joint likelihood of multiple agents, given all the parameters 

associated with a model  , 
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where t = 1, … T are samples. 

In mathematical terms, the learning part of a collaborative learning agent 

system refers to finding the model parameter  to maximize the likelihood )|( xf . It 

is difficult to maximize )|( xf directly due to the interlocking of the parameters of all 

the agents. By introducing a Q-function (e.g., Kullbuk-Leibler statistic method), this 

problem can be transformed into two relatively simple problems, rather than 

maximizing )|( xf  directly. 

Let ),( Q  be a utility function when 

                                    )|()|(),(),(  xfxfQQ      (3) 
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Maximizing ),( Q  with respect to  , referred to as the expectation step of 

the EM methodology, leads to the maximization of ),( xf .The maximization step of 

the EM methodology involves looking for a joint set of states, in this case, a set of 

expertise types that maximize the joint likelihood function, which can be viewed as 

the total fitness for a multi-agent system. The overall fitness R(t,j) is the total fitness 

of a multi-agent system up to time t if the ending expertise is j. The overall fitness 

function can be computed recursively, as shown in Figure 14. The overall fitness 

comes from a combination of the accumulative authority from the past R(t-1, i) and 

individual expertise at time t (i.e., ௝ܾሾݔ௧ሿ).  
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Figure 14. Recursion to Compute the Overall Fitness of a System R(t, j) 

It is evident that traditional swarm intelligence system or PageRank-like 

algorithms only consider the accumulative authority part of the recursion. We 

introduce the expertise or competitiveness part of the recursion as the total fitness of 

a collaborative learning system.
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Appendix A. Overview of the Lexical Link Analysis 
(LLA) Method 

As in military operations, where the term situational awareness was coined, 

we note that that our efforts can inform awareness of analyzed data, in a unique way 

that helps improve decision-makers’ understanding or awareness of the data 

content. We therefore define awareness as the cognitive interface between decision-

makers and a complex system, expressed in a range of terms or “features,” or a 

specific vocabulary or “lexicon,” to describe the attributes and surrounding 

environment of the system. Specifically, LLA is a form of text mining in which word 

meanings represented in lexical terms (e.g., word pairs) can be represented as if 

they are in a community of a word network. Link analysis “discovers” and displays a 

network of word pairs. These word-pair networks are characterized by one-, two-, or 

three-word themes. The weight of each theme is determined by its frequency of 

occurrence.  

Figure 15 shows a visualization of lexical links for Systems 1 and 2 of two 

systems, which are shown in the red box. Unlinked, outer vectors (outside the red 

box) indicate unique system features.  
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Figure 15. Comparing Two Systems Using LLA 

Figure 16  shows how the information from three categories can be 

compared.  
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Figure 16. Comparing Three Systems Using LLA 

Figure 17 shows how the information from two time periods can be compared.  
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Figure 17. Comparing Two Time Periods 

The closeness of the systems in comparison can be visually examined or 

quantitatively examined using the Quadratic Assignment Procedure (QAP; Hubert & 

Schultz, 1976; e.g., in UCINET, Borgatti, Everett, & Freeman, 2002) to compute the 

correlation and analyze the structural differences in the two systems as shown in 

Figure 18. Figure 19 shows word and term themes discovered and shown in colored 

groups. 
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Figure 18. QAP Correlation via UCINET 

 

Figure 19. Word and Term Themes Discovered and Shown in  

Colored Groups 

The detailed steps of LLA processing include applying collaborative learning 

agents (CLA) and generating visualizations, including a lexical network visualization 

via AutoMap (Center for Computational Analysis of Social and Organizational 

Systems [CASOS], 2009), radar visualization, and matrix visualization (Zhao et al., 

2010). The following are the steps for performing an LLA: 
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 Read each set of documents.  

 Select feature-like word pairs.  

 Apply a social network community-finding algorithm (e.g., Newman 
grouping method (Girvan & Newman, 2002) to group the word pairs 
into themes. A theme includes a collection of lexical word pairs 
connected with each other.  

 Compute a “weight” for a theme for the information of a time period; 
that is, how many word pairs belong to a theme for that time period 
and for all the time periods? 

 Sort theme weights by time, and study the distributions of the themes 
by time. 

A. Two Steps  

Figure 20 and Figure 21 illustrates two steps (iterations) to discover themes 

as follows: 

1st Iteration (Figure 20): Compute word pair clusters using Newman’s 

community finding algorithm—words grouped as in a community (Girvan & Newman, 

2002). 

2nd Iteration (Figure 21): Select lexical terms linked to the most central nodes.  
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Figure 20. Initial Groups of  Word Pairs 
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Figure 21.  A Theme Includes a Collection of Word Pairs Selected Using  

Degree Centrality 

B. Word Pair Selection Details 

Figure 22 shows the computation and selection of word pairs in detail. In the 

CLA tool, the properties administration page allows various parameters to be set for 

LLA. For example, 

 The “minimum frequency” specifies the minimum frequency a word can 
remain in the analysis. Words that appear less often than the minimum 
frequency are filtered out from the analysis.  

 The “probability cut” specifies the cutoff probability for a word pair, 
which is defined as the probability of a word given a context. A context 
is the word in a word pair with a minimum frequency. For example, 
“Global Survivability” uses “Survivability” as the context. Since 
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“Survivability” appears only once (frequency = 1), it is skipped and, 
therefore, the whole word pair is not used. “Seek Strategies” and 
“Reduce Necessity” remain as detected word pairs for the following 
two conditions: 

o Prob(Word|Context) > ”Probability Cut” 

o Frequency(Word) or Frequency(Context) > “Minimum 
Frequency” 

“Seek” and “Reduce” are contexts. “Strategies” and “Necessity” are words 

that are associated with the contexts. The context is always placed first in a word 

pair. 

 

Figure 22. Computation and Selection of Word Pairs in Detail 

C. Business Problems That LLA Can Address 

General inquiries that LLA usually answers are as follows:  
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 Discover themes and topics in unstructured documents and sort the 
importance of the themes; 

 Discover social and semantic networks of organizations that are 
involved and compare the two networks to obtain insights to answer 
the following questions— 

o identification of the organizations involved in the important 
themes and 

o comparison of the potential collaboration using semantic 
networks versus social networks. 

D. Social and Semantic Network Analysis 

Current research on social network analysis mostly focuses on people or 

organizations regardless of the contents linked. The so-called study of centrality 

(Girvan & Newman, 2002; Feldman, 2007) has been a focal point for the study of 

social network structures. Finding the centrality of a network lends insight into the 

various roles and groupings, such as the connectors (e.g., mavens, leaders, bridges, 

isolated nodes), the clusters (and who is in them), the network core, and the 

periphery. We have been working toward three areas of innovations in network 

analysis: 

 Extract social networks based on entity extraction; 

 Extract semantic networks based on the contents and word pairs using 
LLA;  

 Apply characteristics and centrality measures from semantic networks 
and social networks to predict latent properties, such as emerging 
leadership that might dominate in the future in the social networks. The 
characteristics are further categorized into themes and time-lined 
trends for prediction of future events. 

E. Implementation Details 

In the past few years, we began at the Naval Postgraduate School (NPS) by 

using Collaborative Learning Agents (CLA; QI, 2009) and expanded to other tools, 

including AutoMap (CASOS, 2009) for improved visualizations. We also set up a 
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cluster utilizing Linux servers in the NPS High Performance Computing Center 

(HPC) to handle the large-scale unclassified data and a secure environment in the 

NPS Secure Technology Battle Laboratory (STBL). We are also in the process of 

investigating new big data technologies such as HDFS (Hadoop Distributed File 

System) and MapReduce as alternatives to HPC for parallel processing for the 

acquisition research web service. We also developed 3-D network views using Pajek 

(Pajek, 2008) and X3D (X3D, 2011). We also developed our visualizations’ Radar 

view and Match view (Zhao et al., 2010). We are investigating how to benefit from 

using infovis, a web visualization tool in JavaScript to replace ORA that is currently 

used to visualize LLA results.  

F. Relation to Other Methods 

The LLA approach is more properly related to Latent Semantic Analysis (LSA; 

Dumais, Furnas, Landauer, Deerwester, & Harshman, 1988) and Probabilistic Latent 

Semantic Analysis (PLSA). In the LSA approach, a term-document matrix is the 

starting point for analysis. The elements of the term-document or feature-object 

(term as feature and document as object) matrix are the occurrences of each word in 

a particular document (i.e., A = [ܽ௜௝], where ܽ௜௝ denotes the frequency in which term j 

occurs in document i). The term-document matrix is usually sparse. LSA uses 

singular value decomposition (SVD) to reduce the dimensionality of the term-

document matrix. SVD cannot be applied to the cases where the vocabulary (the 

unique number of terms) in the document collection is large. LSA has been widely 

used to improve information indexing, search/retrieval, and text categorization.  

A recent development related to this method is called Latent Dirichlet 

Allocation (LDA; Blei, Ng, & Jordan, 2003), which is a generative probabilistic model 

of a corpus. In LDA, a document is considered to be composed of a collection of 

words—a “bag of words,” in which word order and grammar are not considered 

important. The basic idea is that documents are represented as random mixtures 

over latent topics, where each topic is characterized by a statistical distribution 
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(Dirichlet distribution) over the corpus. Our theme generation from LLA is different 

from LDA, in which a collection of lexical terms are connected as text-as-networks 

instead of a bag-of-words. Our method is easily scaled to analyze a large vocabulary 

and is generalizable to any sequential data. 

G. Anticipated Benefits 

The method provides solutions to meet the critical needs of the acquisition 

research community. The key advantages is to provide an innovative near real-time 

self-awareness system to transfer diversified data services into strategic decision-

making knowledge, detailed as follows:  

 Automation: The high correlation of LLA results with the link analysis 
done by human analysts makes it possible for automation, saving 
human power and improving responsiveness. Automation is achieved 
via computer program or software agent(s) to perform LLA frequently—
and in near real-time: Agent learning makes it possible to reach real-
time; visualization corrects lexical links to core measures; features and 
patterns are discovered over time for the system as a whole. We can 
take advantage of the data in motion (Twitter and social media sites), 
such as RSS feed data to build a better picture of real-time program 
awareness. 

 Discovery: It “discovers” and displays a network of word pairs. These 
word-pair networks are characterized by one-, two-, or three-word 
themes. The weight of each theme is determined based on its 
frequency of occurrence. It may also discover blind spots of human 
analysis that are caused by the overwhelming data for human analysts 
to go through.  

 Validation: As we continue validating LLA by direct correlation with 
human analysts’ results, new dimensions of using LLA to validate 
human analysis also show the advantages of our methodology. For 
instance, LLA may provide different perspectives on links. In the 
acquisition context, links discovered by human analysts may 
emphasize component/part connections, but they do not necessarily 
reflect on the content overlaps; therefore, interdependencies of the 
programs identified by human analysts (e.g., program managers) might 
help the programs to stay funded from year to year for the goal of 
building their importance, and not cost reduction for the government.  
LLA looks for overlapping content to improve affordability and to meet 
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the requirements of warfighters. Consequently, it provides better 
results in terms of trust, quality of association, discovery, and it serves 
to break through the taxonomy of ignorance (Denby & Gammack, 
1999) and organizational boundaries, and to improve organizational 
reach.
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